Hydrogen-bond Basicity of Secondary and Tertiary Amides, Carbamates, Ureas and Lactams

Jean-Yves Le Questel,^a Christian Laurence,^a Abdeljalil Lachkar,^b Maryvonne Helbert^a and Michel Berthelot^a

^a Laboratoire de Spectrochimie, Faculté des Sciences et des Techniques, 44072 Nantes, France ^b Laboratoire de Spectroscopie, Université Cadi Ayyad, BP S15, Marrakech, Maroc

The hydrogen-bond basicity scale pK_{HB} (logarithm of the formation constant of 4-fluorophenol-base complexes in CCl₄) has been measured for tertiary and secondary amides, carbonates, ureas and lactams. The hydrogen-bonding fixation site is the carbonyl group, even for the very hindered amide Bu^tCON(C₆H₁₁)₂. In the amides R¹CONR²R³ the hydrogen-bond basicity is decreased more by bulky R¹ substituents on the carbonyl carbon than by bulky R² and R³ substituents on nitrogen. The field effect of X substituents operates more effectively on hydrogen-bond basicity than the resonance effect in the XCONMe₂ series. The hydrogen-bond basicity is increased by six-membered cyclisation.

We are currently building a thermodynamic hydrogen-bond basicity scale based on pK_{HB} , the logarithm of the formation constant K_{HB} of the 1:1 4-fluorophenol-base complex in CCl₄ at 298 K [eqns. (1) and (2)]. In the proton-sharing equilibrium

$$\mathbf{B} + 4 - \mathbf{F} \mathbf{C}_6 \mathbf{H}_4 \mathbf{O} \mathbf{H} \iff 4 - \mathbf{F} \mathbf{C}_6 \mathbf{H}_4 \mathbf{O} \mathbf{H} \cdots \mathbf{B}$$
(1)

 $K_{\text{HB}} = [4 \text{-FC}_{6}\text{H}_{4}\text{OH}\cdots\text{B}]/[4 \text{-FC}_{6}\text{H}_{4}\text{OH}] [B]; (2)$ $pK_{\text{HB}} = \log_{10}K_{\text{HB}}$

(1), 4-fluorophenol is a reference hydrogen-bond donor (chosen for technical reasons) which plays the same role as H_2O , the reference Brønsted acid for proton-transfer equilibria.

We have already published data for various families of bases B: amidines, ¹⁻³ alcohols,⁴ 'push-pull' molecules ⁵ and nitriles.⁶ We present here our pK_{HB} scale for amides, carbamates, ureas and lactams. A number of studies have investigated hydrogen bonding of phenols with tertiary amides,⁷⁻⁹ secondary amides,¹⁰ ureas,¹¹ lactams ¹² and carbamates,¹³ but they refer to a limited number of compounds, to various phenols and different experimental conditions. These data are not satisfactory as we are interested in building a scale defined from a reference process [eqn. (1)] rather than a statistical scale.¹⁴

We have both measured 33 primary pK_{HB} values and also calculated 27 secondary pK_{HB} values, from a linear correlation between pK_{HB} and $\Delta \nu$ (OH), the lowering of the ν (OH) frequency of methanol on going from the free to the hydrogenbonded OH group. Finally we have in hand 60 primary and secondary pK_{HB} values for secondary and tertiary amides, carbamates, ureas and lactams. Both primary and secondary values allow the calculation of β_2^{H} , a linear transform of pK_{HB} [eqn. (3)].¹⁴ The β_2^{H} value permits a quantitative estimate of

$$\beta_2^{\rm H} = (pK_{\rm HB} + 1.1)/4.636 \tag{3}$$

the value of the formation constant for the hydrogen-bonded complex with any hydrogen-bond donor of known hydrogenbond acidity α_2^H value.¹⁵ However, only primary values have sufficient accuracy to achieve a correct understanding of small structural effects on hydrogen-bond basicity.

Experimental

Chemicals were either commercial or synthesized in our

laboratory by known methods. Substituted N,N-dimethylbenzamides were kindly supplied by Dr. Morris (Glasgow).

Infrared measurements were carried out with a Fourier-Transform spectrometer Bruker IFS 45 by selecting 1 cm⁻¹ resolution. A 1 cm quartz Infrasil cell was thermostatted at 25 ± 0.1 °C.

The IRTF spectroscopic method for measuring formation constants of hydrogen-bonded complexes of 4-fluorophenol has previously been described.¹⁻⁵ The maximum error in pK_{HB} is estimated to be ± 0.04 . Secondary amides are mainly in the s-*trans* conformation and self-associate in linear polymers¹⁶ easily broken by the high dilutions used in this work. However acetanilide exists in both the s-*cis* and s-*trans* conformations. The very stable cyclic dimer formed from the s-*cis* monomer of acetanilide prevents determination of a meaningful pK_{HB} value for this secondary amide.

Results

The p $K_{\rm HB}$, infrared frequency shifts $\Delta v(\rm OH)$, and $\beta_2^{\rm H}$ values are reported for the primary set in Table 1.

The correlation coefficient r and the standard deviation s show that a satisfactory correlation exists between pK_{HB} and $\Delta \nu$ (OH) for 30 compounds [eqn. (4)].

$$pK_{\rm HB} = 0.0127 \,\Delta\nu(\rm OH) + 0.137 \qquad (4)$$

n = 30 r = 0.9787 s = 0.09

Hence eqn. (4) can safely be used for calculating secondary $pK_{\rm HB}$ (or $\beta_2^{\rm H}$) values for those amides, carbamates and ureas for which only $\Delta v(OH)$ has been measured. The experimental $\Delta v(OH)$ and calculated $pK_{\rm HB}$ and $\beta_2^{\rm H}$ values are reported in Table 2. Secondary $pK_{\rm HB}$ values are less reliable than primary values since eqn. (4) is subject to $s = 0.09 \log$ units.

Discussion

Hydrogen Bonding Site.—The compounds studied have several potential acceptor sites available for hydrogen-bond formation, namely the oxygens and the nitrogens of the CO–N, N–CO–N and O–CO–N moieties. The lower carbonyl stretching vibration in the complex than in the free base shows, unambiguously, that in amides, lactams, carbamates and ureas, hydrogen bonding occurs on the oxygen of the carbonyl group

Table 1 Hydrogen-bond basicity of amides, carbamates, lactams and ureas: frequency shifts Δv (OH)/cm⁻¹ and primary pK_{HB} and β_2^{H} values

		Tormula	Δ/(011)	ртнв	β_2		
Secondary amides							
N-Methylfor	mamide	HCONHMe	145	1.96	0.66		
N-Methylbe	nzamide	PhCONHMe	152	2.03	0.68		
N-Methylor	pionamide	EtCONHMe	102	2.24	0.72		
N-Ethylaceta	mide	MeCONHEt		2.29	0.73		
N-Methylace	etamide	MeCONHMe	167	2.30	0.73		
Tertiary ami	des						
Dimethylcar	hamovl chloride	CICONMe	70	1.00	0.45		
N N Dimeth	ul 222 triffuoroacetamide	$CE CONM_2$	81	1.00	0.46		
N N Dimeth	vl 2 chloroacetamide	CICH CONMe	133	1.04	0.40		
N Methylfor	manilide	HCONMePh	123	1.74	0.61		
N N Dimbon	ula setemide	McCONPh	123	1.74	0.01		
N N Dilson	yracetannue	DutCONFIL2	150	1.94	0.00		
N,N-Disopr	bowyl 2.2 dimethylpropionalide	$Bu(CON(FT)_2)$	160	2.03	0.08		
	nexyl-2,2-dimethylpropionamide	$Bu'CON(C_6H_{11})_2$	160	2.00	0.68		
N,N,2,2-1etr		Bu CONMe ₂	101	2.10	0.69		
N,N-Dimeth	yllormamide	HCONMe ₂	150	2.10	0.69		
N-Methylace	tanilide	MeCONMEPh	150	2.19	0.71		
N,N-Dicyclo	hexylpropionamide	$EtCON(C_6H_{11})_2$	170	2.22	0.72		
N,N-Dimeth	ylbenzamide	PhCONMe ₂	159	2.23	0.72		
N,N-Dicyclo	hexylisobutyramide	$Pr'CON(C_6H_{11})_2$	174	2.24	0.72		
N,N-Dimeth	ylisobutyramide	Pr'CONMe ₂	171	2.26	0.72		
N,N-Dimeth	ylpropionamide	EtCONMe ₂	166	2.36	0.75		
N,N-Dicyclo	hexylacetamide	$MeCON(C_6H_{11})_2$		2.41	0.76		
N,N-Dimeth	ylacetamide	MeCONMe ₂	179	2.44	0.76		
N,N-Diethyl	acetamide	MeCONEt ₂	184	2.47	0.77		
Lactams							
1-Methyl-2-	byrrolidone		185	2.38	0.75		
N-Methylca	orolactam		183	2.53	0.78		
1-Methyl-2-	ovridone		192	2.57	0.79		
1-Methyl-2-	operidone		194	2.60	0.80		
Carbamates							
Phenyl dime	thylcarbamate	PhOCONMe.	112	1 70	0.60		
Ethyl dimeth	ylcarbamate	EtOCONMe ₂	137	1.83	0.63		
Ureas		-					
11005		E NOONE	175	• • •	0.74		
1,1,3,3-Tetra	etnylurea	Et ₂ NCONEt ₂	175	2.43	0.76		
1,1,3,3-Tetra	methylurea	Me ₂ NCONMe ₂	177	2.44	0.76		
N,N'-Dimetl	yl N,N'-ethyleneurea		183	2.46	0.77		
N, N'-Dimetl	yl N, N' -trimethyleneurea		210	2.79	0.84		

Fig. 1 FT-IR spectrum of BuⁱCON(C_6H_{11})₂ in the ν (CO) region: a, BuⁱCON(C_6H_{11})₂ ($c = 0.03 \text{ mol dm}^{-3}$) in CCl₄; b, BuⁱCON(C_6H_{11})₂ ($c = 0.03 \text{ mol dm}^{-3}$) and 4-fluorophenol ($c = 0.03 \text{ mol dm}^{-3}$) in CCl₄; c, BuⁱCON(C_6H_{11})₂ ($c = 0.03 \text{ mol dm}^{-3}$) and 4-fluorophenol ($c = 0.13 \text{ mol dm}^{-3}$) in CCl₄. The bands marked with an asterisk at 1605 and 1612 cm⁻¹ are the ring-valence vibrations of 4-fluorophenol.

and not on the other heteroatoms. However, for the sterically hindered amides $Pr^{i}CON(C_{6}H_{11})_{2}$ and $Bu'CON(C_{6}H_{11})_{2}$ it has been suggested ¹⁷ that steric hindrance reduces the conjugation of the CO and $N(C_{6}H_{11})_{2}$ groups and hence the basicity of the carbonyl group and that, towards the Lewis acid I₂, nitrogen would become the basic site. Fig. 1 shows that the addition of 4-fluorophenol to a CCl₄ solution of Bu'CON(C₆H₁₁)₂ induces a lowering of 32 cm⁻¹ of the carbonyl stretching vibration at 1629 cm⁻¹. Hence Bu'CON(C₆H₁₁)₂ behaves similarly to MeCON(Me₂), for which $\Delta\nu$ (C=O) is 25 cm⁻¹, and even for hindered amides the carbonyl remains the hydrogen-bonding site.

Steric Effects.—These are most easily studied by alkyl substitution on the CO–N function. In the trialkylated amide $R^1CONR^2R^3$, front strain between bulky substituents R^1 and/or NR^2R^3 and 4-fluorophenol must decrease the equilibrium constant, whereas back strain between R^1 and NR^2R^3 and also between R^2 and R^3 can be released by rotations and/or angle opening. It is clear that front strain occurs between bulky alkyl R^1 substituents on the carbonyl group and 4-fluorophenol since pK_{HB} decreases regularly when the size of R^1 increases in the R^1CONMe_2 series.

 $MeCONMe_2(2.44) > EtCONMe_2(2.36)$ > $Pr^iCONMe_2(2.29) > Bu'CONMe_2(2.10)$

This decrease of 0.34 pK_{HB} unit on going from MeCONMe₂ to Bu'CONMe₂ is also observed from MeCON(C₆H₁₁)₂ to Bu'CON(C₆H₁₁)₂.

Table 2 Hydrogen-bond basicity of amides, carbamates and ureas: experimental frequency shifts $\Delta v(OH)/cm^{-1}$ of methanol and secondary calculated p K_{HB} and β_{\pm}^{H} values

 Compounds	Formula	$\Delta v(OH)$	р <i>К</i> _{нв}	$\beta_2^{\rm H}$
Amides		-		
Diphenylcarbamoyl chloride	ClCONPh ₂	48	0.75	0.40
Diethylcarbamoyl chloride	CICONEt,	74	1.08	0.47
N,N-Dimethyl-2,2,2-trichloroacetamide	CCl ₃ CONMe ₂	81	1.17	0.49
N,N-Diphenylformamide	HCONPh,	100	1.41	0.54
N,N-Diphenylbenzamide	PhCONPh ₂	116	1.61	0.35
N,N-Diphenyl-2,2-dimethylpropionamide	Bu'CONPh,	118	1.64	0.59
N,N-Diphenyl-4-methoxybenzamide	4-MeOC ₆ H ₄ CONPh ₂	121	1.67	0.60
N,N-Dimethyl-4-nitrobenzamide	$4-NO_2C_6H_4CONMe_2$	139	1.90	0.65
N,N-Dimethyl-4-(trifluoromethyl)benzamide	$4-CF_{3}C_{6}H_{4}CONMe_{2}$	144	1.97	0.66
N,N-Dimethyl-4-bromobenzamide	$4-BrC_6H_4CONMe_2$	152	2.07	0.68
1-Formylpiperidine		152	2.07	0.68
N,N-Diethylformamide	HCONEt ₂	153	2.08	0.69
N,N-Dimethyl-4-fluorobenzamide	4-FC ₆ H ₄ CONMe ₂	158	2.14	0.70
N,N-Diethylbenzamide	PhCONEt ₂	167	2.26	0.72
N,N-Dimethyl-4-methylbenzamide	$4-MeC_6H_4CONMe_2$	168	2.27	0.73
N,N-Dimethyl-4-methoxybenzamide	4-MeOC ₆ H ₄ CONMe ₂	171	2.31	0.74
N,N-Diethyl-4-methoxybenzamide	4-MeOC ₆ H ₄ CONEt ₂	174	2.35	0.74
N,N-Dimethyl-4-dimethylaminobenzamide	$4-Me_2NC_6H_4CONMe_2$	185	2.49	0.77
Carbamates				
Dhanul dinhanulcarhamata	PLOCONPL	° 2	1 1 0	0.40
Methyl diphenylcarbamate	MeOCONPh	02 100	1.10	0.49
Ethyl diphenylcarbamate	EtoCONPh	100	1.41	0.54
Methyl dimethylcarbamate	MeOCONMe	105	1.45	0.55
Ethyl diethylcarbamate	EtoCONEt	1/3	1.00	0.03
		145	1.95	0.00
Ureas				
1.1.3.3-Tetraphenylurea	Ph ₂ NCONPh ₂	126	1.74	0.61
1.1-Diphenyl-3.3-diethylurea	Ph ₂ NCONEt ₂	152	2.07	0.68
1,1-Diphenyl-3,3-dimethylurea	Ph ₂ NCONMe ₂	153	2.08	0.69
1,3-Diphenyl-1,3-diethylurea	PhEtNCONEtPh	159	2.16	0.70

In contrast, replacement of the methyl substituents on the nitrogen atom by bulky cyclohexyl substituents does not decrease significantly pK_{HB} when R^1 is small, *cf.* MeCONMe₂ (2.44) and MeCON(C₆H₁₁)₂ (2.41).

Electrical Effects.—In the tertiary amides XCONMe₂ the electronic effects of the X substituents H, Me, Ph, Cl, CF₃, ClCH₂, OEt, OPh and NMe₂ on the hydrogen-bond basicity can be analysed by means of eqn. (5),¹⁸ where pK_{HB}° refers to HCONMe₂, σ_{F} and σ_{R} measure the field and resonance

$$pK_{HB} = pK_{HB}^{\circ} + \rho_F \sigma_F + \rho_R \sigma_R \tag{5}$$

effects of X substituents,¹⁸ and $\rho_{\rm F}$ and $\rho_{\rm R}$ measure the sensitivity of hydrogen-bond basicity to these effects.¹⁸ It must be pointed out that eqn. (5) does not take into account (*i*) the steric effects of X substituents, (*ii*) possible non-additive effects.¹⁹ of X and NMe₂ substituents on the carbonyl group, which should require cross-terms in eqn. (5), and (*iii*) saturation effects of strongly electron-donating substituents.²⁰ Nevertheless, eqn. (6) has satisfactory statistics (*cf.* correlation coefficient *r* and standard deviation *s*).

$$pK_{\rm HB} = 2.26 - 2.74 \,\sigma_{\rm F} - 0.78 \,\sigma_{\rm R}^+ \qquad (6)$$

$$n = 9 \quad r = 0.969 \quad s = 0.15$$

The sensitivity coefficients ρ_F and ρ_R of eqn. (6) show that field effects play the leading part and that resonance effects are not very important. For example, in ClCONMe₂ the resonance electron-donating effect of chlorine is outweighed by its field electron-withdrawing effect, and ClCONMe₂ is the least basic amide of this study. Also, the strong resonance electrondonating effect of NMe_2 does not seem to be operative in $Me_2NCONMe_2$ since tetramethylurea is not more basic than dimethylacetamide.

In the secondary amides XCONHMe, the effects of the substituents H, Me, Et and Ph parallel those of tertiary amides:

 $HCONMe_2 (2.10) < PhCONMe_2 (2.23) < EtCONMe_2 (2.36) < MeCONMe_2 (2.44)$

Compared with H, the electron-donating effect of alkyl groups R and electron-withdrawing effect of phenyl easily explain the following sequence observed for substitutions on the nitrogen atom of the amide function:

$$MeCONR_2 > MeCONHR > MeCONRPh > MeCONPh_2$$

A $\Delta p K_{HB}$ increment of -0.25 can be calculated for the Me/Ph substitution on the nitrogen of the amide function from the following $p K_{HB}$ values

$$MeCONMe_2$$
 (2.44) > $MeCONMePh$ (2.19) > $MeCONPh_2$ (1.94)

Cyclisation.—Cyclisation without cyclic strain (six-membered rings) increases the hydrogen-bond basicity of amides and ureas: 1-methyl-2-piperidone is more basic by 0.16 p $K_{\rm HB}$ units than is dimethylacetamide, and dimethyltrimethyleneurea is more basic by 0.35 p $K_{\rm HB}$ units than tetramethylurea.

J. CHEM. SOC. PERKIN TRANS. 2 1992

- 10 C. Dorval and Th. Zeegers-Huyskens, Spectrosc. Lett., 1974, 7(6), 247. 11 J. P. Muller, G. Vercruysse and Th. Zeegers-Huyskens, J. Chim. Phys. Chim. Biol., 1972, 69, 143.
 - 12 T. Gramstad and W. J. Fuglevik, Spectrochim. Acta, 1965, 21, 343.
 - 13 K. Platteborze, J. Parmentier and Th. Zeegers-Huyskens, Spectrosc. Lett., 1991, 24(5), 635.
 - 14 M. H. Abraham, P. L. Grellier, D. V. Prior, J. J. Morris and P. J. Taylor, J. Chem. Soc., Perkin Trans. 2, 1990, 521.
 - 15 M. H. Abraham, P. L. Grellier, D. V. Prior, R. W. Taft, J. J. Morris, P. J. Taylor, C. Laurence, M. Berthelot, R. M. Doherty, M. J. Kamlet, J. L. M. Abboud, K. Sraïdi and G. Guihéneuf, J. Am. Chem. Soc., 1988, 110, 8534.
 - 16 H. E. Hallam and C. M. Jones, J. Mol. Struct., 1970, 5, 1.
 - 17 G. Guihéneuf, J. L. M. Abboud and A. Lachkar, Can. J. Chem., 1988, 66, 1032.
 - 18 R. W. Taft and R. D. Topsom, Prog. Phys. Org. Chem., 1987, 16, 1.
 - 19 O. Exner, Collect. Czech. Chem. Commun., 1976, 41, 1516.
 - 20 C. A. Filgueiras and J. E. Huheey, J. Org. Chem., 1976, 41, 49.

Paper 2/04939B Received 15th September 1992 Accepted 5th October 1992

The most basic cyclic ureas and lactams also seem to be six-membered since 1-methyl-2-pyrrolidone (five-membered) and N-methylcaprolactam (seven-membered) are less basic than 1-methyl-2-piperidone (six-membered) and dimethyltrimethyleneurea (six-membered) is more basic than dimethylethyleneurea (five-membered).

References

2094

- 1 E. D. Raczynska, C. Laurence and P. Nicolet, J. Chem. Soc., Perkin Trans. 2, 1988, 1491.
- 2 E. D. Raczynska and C. Laurence, J. Chem. Res. (S), 1989, 148
- 3 E. D. Raczynska, C. Laurence and M. Berthelot, Can. J. Chem., in the press.
- 4 C. Laurence, M. Berthelot, M. Helbert and K. Sraïdi, J. Phys. Chem., 1989, **93**, 3799.
- 5 C. Laurence, M. Berthelot, E. D. Raczynska, J. Y. Le Questel, G. Duguay and P. Hudhomme, J. Chem. Res. (S), 1990, 250.
- 6 M. Berthelot, M. Helbert, C. Laurence and J. Y. Le Questel, J. Phys. Org. Chem., submitted.
- 7 T. Gramstad and W. J. Fuglevik, Acta Chem. Scand., 1962, 16, 1369.
- 8 M. D. Joensten and R. S. Drago, J. Am. Chem. Soc., 1962, 84, 2697.
- 9 E. Kwiatkowsky, K. Kozubek and Z. Peplinski, Z. Naturforsch., Teil *B*, 1978, **33**(2), 230.